
UKIEPC 2023
Summary and solution outlines



Problem Solutions



Assessment
25 correct • solved at: ??:?? by

??
??

Overview
● We know that our grader will be using a 

tedious sorting algorithm
○ The algorithm sorts pairs (x,y)
○ (x,y) ⊂ (u,v) if all hold:

■ x ≤ u
■ y ≤ v
■ x+y < u+v

● What is an example of a worst-case 
input (cubic complexity) you can pass in 
to this algorithm?



● Complexity analysis
● Construction

Assessment
Techniques Algorithm

● We need to construct a case with O(N^3) comparisons.
● We’ll aim to guarantee two things in every rounds:

○ Commit at most two items and leave everything else pending 
so that we perform O(N) rounds.

○ For a significant fraction of the items eventually marked as 
pending, perform O(N) comparisons for O(N²) in total.

● How will we do this?
○ The first K elements should be incomparable, for example for 

(x, y) and (u, v) perhaps x < u, y > v
○ The remaining N-K elements can be arranged such that they 

are dominated by the last N-K elements of the first set.
■ So, in the first N-K rounds we will commit one element 

from the K set and one element from the N-K set.



Boat Commuter
124 correct • solved at: ??:?? by

??
??

Overview
● People tap in and out of the ticket 

machines for ferries
○ We will fine people £100 if they fail 

to tap out or tap back in the same 
place

○ How much should we charge 
them?



● Maps
● Bookkeeping

Boat Commuter
Techniques Algorithm

● Keep an array of the last place somebody tapped in.
○ Use -1 if they have not tapped in at all.

● Scan through the events in the order they are given.
○ If the last place somebody tapped in is -1,

■ Record where they tapped in
■ And immediately fine them £100

○ Otherwise,
■ Calculate the cost of their trip
■ And if their trip started and ended at different places, 

refund their £100
● Keeping track of fines separately also works. Just look out for 

open journeys at the end of the input.



Clearing Space
27 correct • solved at: ??:?? by

??
??

Overview
● Choose N out of M points on a circle

○ Such that the polygon they define 
has maximum possible area



● Geometry
● Dynamic programming

Clearing Space
Techniques Algorithm

● Assume we start at point S in the input.
○ Rotate the input array so that point S is at the start.
○ We have to go through a subset of K points (including S itself 

at the end) to create the maximum-area polygon.
● The area of a polygon can be calculated using triangles from the 

centre of the circle.
○ For every pair of adjacent points A and B, their area 

contribution is (Ay - By) * (Ax - Bx) / 2
● The solution is a recursion which can be memoised with dynamic 

programming:
○ answer(p, points_used) = max(

answer(p’ < p, points_used-1)+ area(p’, p)
● Try every possible start point S.



Delivery Forces
151 correct • solved at: ??:?? by

??
??

Overview
● We have 3N people and we must group 

them into teams of 3
○ Such that their “strength” is the 

median of the group
○ Find the way to group people 

together such that the sum of 
strength is largest



● Greedy algorithms
● Sorting

Delivery Forces
Techniques Algorithm

● The biggest element certainly can’t be a median
○ The only way the second-biggest element can be a median is 

if it is in a set with the biggest,
○ So, the optimal thing for the two biggest elements is to put 

them together.
○ Combine the two biggest elements with the smallest element 

(since this is no worse than any other)
● Now we have N-3 items and can repeat
● If we simply reverse-sort the list, we can take every second 

element and sum up until we reach N/3 elements.



Enchanted
1 correct • solved at: ??:?? by

??
??

Overview
● When we choose a subset of spells 

including (i,j) we look up in a matrix cell 
(i,j) to find how much they contribute to 
our strength
○ Find which subset we should 

choose so that sum(strength) is 
largest



● Bitmasks
● Meet-in-the-middle
● (Simulated annealing)

Enchanted Fortress
Techniques Algorithm

● A simple brute-force over all combinations is almost effective, but 
too slow because we have to do a heavy loop at the end to confirm 
the solution is correct.
○ So, instead, we’ll do 2 smaller brute-forces on bitmasks and 

work on a fast way of combining them.
○ For each half of the array, run a brute-force version of the 

algorithm and record the “partial” strength of all the pairwise 
combinations in that half.

● To combine the two halves of our answer, we have to brute-force 
everything.
○ We still need to collect some information to “join” the two 

halves. We can use join_result[mask] to quickly construct 
join_result[mask | x]



Fast Forward
22 correct • solved at: ??:?? by

??
??

Overview
● We are going to play a playlist starting 

from song X and ending on song 
(X+N-1) MOD N

● After K seconds since the last 
advertisement and after the last song 
finishes playing, we play an 
advertisement
○ For each X, how many ads are we 

going to hear?



● Jump tables
● Two pointers

Fast Forward
Techniques Algorithm

● Assuming we start at song X, we can easily work out next(X): the 
next time at which we’ll hear an advertisement
○ What about the second-next time? This is simply 

next(next(X)) if we already calculated all the values of next(). 
Let’s record it as next[1](X).

○ Similarly we can record the position after 4 ad breaks 
next[2](X) = next[1](next[1](X))

● We need to know how many times T we can iterate next(X) before 
arriving back at X (modulo N)
○ Generate T bit-by-bit, starting from a large number B (eg. 

next[B=20] for 1048576 ads) and checking if this goes over. 
As long as it does, keep reducing B until we can repeat.

● Complexity: O(NlogN)



Glacier Travel
1 correct • solved at: ??:?? by

??
??

Overview
● You are walking along the same trail as 

someone else, X metres behind them on 
the trail
○ However, the trail turns left and 

right and doubles back, so you 
may be closer at some times

○ What is the closest you will come 
during the walk?



● Two-pointers
● Ternary search
● 3:1 Hauling system

Glacier Travel
Techniques Algorithm

● If persons A and B were simply travelling in the same straight lines 
forever, this would be an easy problem.
○ Either analytically, use calculus to find the time at which the 

square of their distance is as small as possible
○ Or numerically, use a ternary search to find the same time.

● We can simplify the problem by cutting it up
○ Persons A and B change directions every time they come to 

a vertex. Person A comes to the vertex at time L (where L = 
sum of all the lengths up to the vertex), and person B comes 
to the vertex at time L+S.

● Put all of the key times into a set, and for each adjacent pair of 
times compute the directions persons A and B are walking, and 
solve this smaller problem, then take the minimum of all answers.



History
3 correct • solved at: ??:?? by

??
??

Overview

● You have a sequence of data with 
condition for the “validity” of a 
subsequences:
○ The local minimums of the array 

are strictly increasing
○ Local minimums are calculated 

ignoring adjacent identical values
● We will repeatedly modify segments of 

this array by a constant amount
○ Given some subsequences 

on-demand, calculate if they are 
“valid”



● Segment trees
● Lazy updates

History in Numbers
Techniques Algorithm

● We will keep track of ranges of “increasing” and “non-increasing” 
sequences and their boundaries in a segment tree.
○ When it comes to time to update a range, in theory we must 

run some extra logic on each subtree to get them into a 
correct state for the next query and deal with boundary 
conditions.

○ However, we may have more updates than queries, or queries 
may not touch the changed nodes, so instead we can mark 
the node as “pending change by X” if we don’t need the result 
right now.

● When recursing through the segment tree, we need to process 
pending updates and make the query afterwards.



International
0 correct • not solved

Overview
● Fit 3 power plug pins to 3 power socket 

cylinders
○ The sizes of the pins are different 

from the sizes of the pins, so 
fitting is non-trivial

○ You may need to rotate/move the 
pins to get them to fit.



● Graph generation
● Depth-first-search

International Travels
Techniques Algorithm

● First, make a brute-force loop over the (few) possible ways of 
matching pins to socket cylinders.
○ Now that the assignments are fixed, we can “shrink” the pins 

to points and “grow” the cylinders by the same amount.
○ The problem is now to fit the 3 vertices of a triangle into their 

3 assigned circles.
● The next useful principle is that if a solution is possible, there is a 

solution where two of the vertices are on the border of their circles.
○ You will need case analysis on the different ways the points 

align with the circles, plus 2-dimensional geometry (and/or 
more ternary search), and a strong drink.



Journey
0 correct • solved at: 02:53 by

??
??

Overview
● You expect a flight on your travel 

itinerary to get cancelled
○ When this happens, you will take a 

direct shortest path to your final 
destination airport

○ What is the latest that this can end 
up making you, if you behave 
optimally?



● Shortest paths
● Graph reversal

Journey of Recovery
Techniques Algorithm

● Use the flight list to find all of the “interesting” times for an airport.
○ Make a graph which has one vertex for every (airport x time) 

combination, eg. (Sydney @ 0d:23:30)
○ Edges consist of flights from the input, as well as “default” 

edges to the next interesting time in the same airport.
● For any vertex, we need to know the earliest time to arrive at our 

destination T. Reverse all the edges of the graph and run 
depth-first search from all the (T, time) combinations starting from 
the latest one
○ When visiting a node for the first time, mark it as “visited” 

and annotate it with “time”.
● For all flights on the itinerary, check the T-time in O(1) and print the 

maximum. Tiebreak by moving itinerary flights 0.5 minutes earlier.



Kernel Scheduler
30 correct • solved at: ??:?? by

??
??

Overview
● Remove less than half of a set of 

dependencies
○ Such that there are no cycles in 

the dependencies any more
○ Print the remaining dependencies



● Acyclic graphs

Kernel Scheduler
Techniques Algorithm

● The dependencies form a graph. We are looking to make an 
acyclic subgraph (no loops) with at least M/2 edges.

● One easy way of fulfilling the brief is to look at the ordering of the 
tasks and split the dependencies into two classes:
○ increasing: the edge (a → b) connects (a < b)
○ decreasing: the edge (a → b) connects (a > b)

● There can never be a loop in a graph made only of increasing 
dependencies, or only of decreasing dependencies, and at least 
one set contains half or more of the edges.
○ So, make the two sets, and then print the bigger one.



Last One Standing
161 correct • solved at: ??:?? by

??
??

1x unsuccessful attempt by the GenAI team

Overview
● Every T seconds, one robot does D 

damage to the other robot with health H
○ The other robot will be doing 

exactly the same back with its own 
values of T, D, and H

○ Which robot will be victorious? If 
both robots fire at the same time 
both are hit later



● Integer arithmetic
● Endurance

Last One Standing
Techniques Algorithm

● We must calculate the time at which each robot dies and compare 
them. For this we need:
○ H = Health
○ D = Damage (other player)
○ T = Time (other player)

● After X seconds, we’ll have taken ⌊(X+T)/T⌋ hits
○ Thus, solve H ≤ D*⌊(X+T)/T⌋ for X
○ This gives ⌈H/D-1⌉*T = X

● Compare the times, and print the appropriate answer.



Mini-Tetris 3023
169 correct • solved at: ??:?? by

??
??

Also solved by the GenAI team!

Overview
● You have 3 kinds of Tetris pieces and 

want to use them to build a really long 
2xN rectangle
○ Without any gaps
○ How big can you make this 

rectangle?



● Logic
● Construction

Mini-Tetris 3023
Techniques Algorithm

● 2x2 squares just add 2 points each to the answer
● “S” pieces are useless on their own

○ Whenever we have at least 2 “L” pieces, we can sandwich all 
the “S” pieces between them in one conga line:

● The remaining “L” pieces must be paired up into 3-square-wide 
blocks, so round down to an even number and multiply by 1.5.



Naming Wine
155 correct • solved at: ??:?? by

??
??

Also solved by the GenAI team!

Overview

● You have a collection of sizes of wine 
bottles.
○ Create names for them.
○ The names must be unique and 

consistent for the same-sized 
bottle.



● Hash maps

Naming Wine Bottles
Techniques Algorithm

● We’re going to invent creative names for the bottles based on a 
“canonical” version of the number so that it’s consistent.

● One algorithm:
○ Convert the input to a string. Remove trailing “0” and “L” 

characters, and the “.” if it is the only thing remaining.
○ Map all the digits “0-9” to “a-j” and the decimal point “.” to “z”. 

Print this out.
● Another option:

○ Create a (hash)map of sizes to names. Floats (narrowly) 
work as keys.

○ For each element, check the map. If it’s not present generate 
a random name.



http://ukiepc2023.cloudcontest.org/
Final Standings

http://ukiepc2023.cloudcontest.org/

